Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 312
Filter
1.
J Infect Dev Ctries ; 17(5): 597-609, 2023 05 31.
Article in English | MEDLINE | ID: covidwho-20243572

ABSTRACT

INTRODUCTION: Antimicrobial resistance (AMR) is a natural evolutionary process in bacteria that is accelerated by selection pressure from the frequent and irrational use of antimicrobial drugs. This study aimed to determine the variations in AMR patterns of priority bacterial pathogens at a tertiary care hospital in the Gaza Strip during pre- and post-COVID-19 pandemic. METHODOLOGY: This is a retrospective observational study to determine the AMR patterns of bacterial pathogens at a tertiary hospital in the Gaza Strip in the post-COVID-19 pandemic period compared to the pre-COVID-19 period. Positive-bacterial culture data of 2039 samples from pre-COVID-19 period and 1827 samples from post-COVID-19 period were obtained from microbiology laboratory records. These data were analysed and compared by Chi square test using Statistical Package for Social Sciences (SPSS) Program. RESULTS: Gram-positive and Gram-negative bacterial pathogens were isolated. Escherichia coli was the most prevalent in both study periods. The overall AMR rate was high. There was a statistically significant increase in resistance to cloxacillin, erythromycin, cephalexin, co-trimoxazole and amoxicillin/clavulanic acid in the post-COVID-19 period compared to pre-COVID-19 period. There was also a significant decrease in resistance to cefuroxime, cefotaxime, gentamicin, doxycycline, rifampicin, vancomycin and meropenem in the post-COVID-19 period. CONCLUSIONS: During the COVID-19 pandemic, the AMR rates of restricted and noncommunity-used antimicrobials declined. However, there was an increase in AMR to antimicrobials used without medical prescription. Therefore, restriction on the sale of antimicrobial drugs by community pharmacies without a prescription, hospital antimicrobial stewardship and awareness about the dangers of extensive use of antibiotics are recommended.


Subject(s)
Anti-Bacterial Agents , COVID-19 , Humans , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Tertiary Care Centers , Pandemics , Drug Resistance, Bacterial , COVID-19/epidemiology , Bacteria , Escherichia coli , Microbial Sensitivity Tests
2.
Am J Trop Med Hyg ; 109(1): 182-190, 2023 07 05.
Article in English | MEDLINE | ID: covidwho-20243341

ABSTRACT

Ultraviolet (UV) radiation systems, commonly used to disinfect surfaces, drinking water, and air, stem from historical practice to use sunlight to disinfect household items after contagious illness. Currently, it is still recommended in viral outbreak contexts such as COVID-19, Ebola, and Marburg to expose soft surfaces to sunlight after washing with detergent or disinfecting with chlorine. However, sunlight that reaches the Earth's surface is in the UVA/UVB wavelengths, whereas UV disinfection systems typically rely on biocidal UVC. Our goal was to fill the evidence gap on the efficacy of sunlight disinfection on surface materials common in low-resource healthcare settings by seeding four surfaces (stainless steel, nitrile, tarp, cloth) with three microorganisms (viral surrogate bacteriophages Phi6 and MS2 and Escherichia coli bacteria), with and without soil load, and exposing to three sunlight conditions (full sun, partial sun, cloudy). We conducted 144 tests in triplicate and found: solar radiation averaged 737 W/m2 (SD = 333), 519 W/m2 (SD = 65), and 149 W/m2 (SD = 24) for full sun, partial sun, and cloudy conditions; significantly more surfaces averaged ≥ 4 log10 reduction value (LRV) for Phi6 than MS2 and E. coli (P < 0.001) after full sun exposure, and no samples achieved ≥ 4 LRV for partial sun or cloudy conditions. On the basis of our results, we recommend no change to current protocols of disinfecting materials first with a 0.5% chlorine solution then moving to sunlight to dry. Additional field-based research is recommended to understand sunlight disinfection efficacy against pathogenic organisms on healthcare relevant surfaces during actual outbreak contexts.


Subject(s)
COVID-19 , Water Purification , Humans , Sunlight , Disinfection/methods , Escherichia coli , Chlorine , Ultraviolet Rays , Water Purification/methods
3.
ACS Biomater Sci Eng ; 9(7): 4178-4186, 2023 07 10.
Article in English | MEDLINE | ID: covidwho-20238528

ABSTRACT

The SARS-CoV-2 global pandemic has reinvigorated interest in the creation and widespread deployment of durable, cost-effective, and environmentally benign antipathogenic coatings for high-touch public surfaces. While the contact-kill capability and mechanism of metallic copper and its alloys are well established, the biocidal activity of the refractory oxide forms remains poorly understood. In this study, commercial cuprous oxide (Cu2O, cuprite) powder was rapidly nanostructured using high-energy cryomechanical processing. Coatings made from these processed powders demonstrated a passive "contact-kill" response to Escherichia coli (E. coli) bacteria that was 4× (400%) faster than coatings made from unprocessed powder. No viable bacteria (>99.999% (5-log10) reduction) were detected in bioassays performed after two hours of exposure of E. coli to coatings of processed cuprous oxide, while a greater than 99% bacterial reduction was achieved within 30 min of exposure. Further, these coatings were hydrophobic and no external energy input was required to activate their contact-kill capability. The upregulated antibacterial response of the processed powders is positively correlated with extensive induced crystallographic disorder and microstrain in the Cu2O lattice accompanied by color changes that are consistent with an increased semiconducting bandgap energy. It is deduced that cryomilling creates well-crystallized nanoscale regions enmeshed within the highly lattice-defective particle matrix. Increasing the relative proportion of lattice-defective cuprous oxide exposed to the environment at the coating surface is anticipated to further enhance the antipathogenic capability of this abundant, inexpensive, robust, and easily handled material for wider application in contact-kill surfaces.


Subject(s)
COVID-19 , Copper , Humans , Copper/pharmacology , Copper/chemistry , Powders/pharmacology , Escherichia coli , SARS-CoV-2 , Bacteria
4.
Int J Environ Res Public Health ; 20(10)2023 05 10.
Article in English | MEDLINE | ID: covidwho-20236123

ABSTRACT

We assessed the disinfection efficacy of an ozone generator prototype in ambulances used to transport patients with coronavirus disease (COVID-19). This research consisted of three stages: in vitro tests using microbial indicators, such as Candida albicans, Escherichia coli, Staphylococcus aureus and Salmonella phage, which were experimentally inoculated onto polystyrene crystal surfaces within a 23 m3 enclosure. They were then exposed to ozone at a 25 ppm concentration using the ozone generator (Tecnofood SAC) portable prototype, and the decimal reduction time (D) was estimated for each indicator. The second stage involved the experimental inoculation of the same microbial indicators on a variety of surfaces inside conventional ambulances. The third stage consisted of exploratory field testing in ambulances used to transport patients with suspected COVID-19. During the second and third stages, samples were collected by swabbing different surfaces before and after 25 ppm ozonisation for 30 min. Results suggested that ozone was most effective on Candida albicans (D = 2.65 min), followed by Escherichia coli (D = 3.14 min), Salmonella phage (D = 5.01 min) and Staphylococcus aureus (D = 5.40 min). Up to 5% of the microbes survived following ozonisation of conventional ambulances. Of the 126 surface samples collected from ambulances transporting patients with COVID-19, 7 were positive (5.6%) for SARS-related coronavirus as determined on reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR). Ozone exposure from the ozone generator prototype inside ambulances at a concentration of 25 ppm for 30 min can eliminate gram positive and negative bacteria, yeasts, and viruses.


Subject(s)
COVID-19 , Ozone , Humans , Disinfection/methods , Ambulances , Peru , Pandemics , Staphylococcus aureus , Escherichia coli
5.
Int J Mol Sci ; 24(10)2023 May 18.
Article in English | MEDLINE | ID: covidwho-20235991

ABSTRACT

A new series of 4-((7-methoxyquinolin-4-yl) amino)-N-(substituted) benzenesulfonamide 3(a-s) was synthesized via the reaction of 4-chloro-7-methoxyquinoline 1 with various sulfa drugs. The structural elucidation was verified based on spectroscopic data analysis. All the target compounds were screened for their antimicrobial activity against Gram-positive bacteria, Gram-negative bacteria, and unicellular fungi. The results revealed that compound 3l has the highest effect on most tested bacterial and unicellular fungal strains. The highest effect of compound 3l was observed against E. coli and C. albicans with MIC = 7.812 and 31.125 µg/mL, respectively. Compounds 3c and 3d showed broad-spectrum antimicrobial activity, but the activity was lower than that of 3l. The antibiofilm activity of compound 3l was measured against different pathogenic microbes isolated from the urinary tract. Compound 3l could achieve biofilm extension at its adhesion strength. After adding 10.0 µg/mL of compound 3l, the highest percentage was 94.60% for E. coli, 91.74% for P. aeruginosa, and 98.03% for C. neoformans. Moreover, in the protein leakage assay, the quantity of cellular protein discharged from E. coli was 180.25 µg/mL after treatment with 1.0 mg/mL of compound 3l, which explains the creation of holes in the cell membrane of E. coli and proves compound 3l's antibacterial and antibiofilm properties. Additionally, in silico ADME prediction analyses of compounds 3c, 3d, and 3l revealed promising results, indicating the presence of drug-like properties.


Subject(s)
Anti-Infective Agents , Urinary Tract Infections , Escherichia coli , Structure-Activity Relationship , Microbial Sensitivity Tests , Anti-Infective Agents/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Sulfanilamide/pharmacology , Sulfonamides/pharmacology , Fungi , Biofilms
6.
Int J Biol Macromol ; 243: 125228, 2023 Jul 15.
Article in English | MEDLINE | ID: covidwho-20234527

ABSTRACT

Melaleuca alternifolia essential oil (MaEO) is a green antimicrobial agent suitable for confection eco-friendly disinfectants to substitute conventional chemical disinfectants commonly formulated with toxic substances that cause dangerous environmental impacts. In this contribution, MaEO-in-water Pickering emulsions were successfully stabilized with cellulose nanofibrils (CNFs) by a simple mixing procedure. MaEO and the emulsions presented antimicrobial activities against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli). Moreover, MaEO deactivated the SARS-CoV-2 virions immediately. FT-Raman and FTIR spectroscopies indicate that the CNF stabilizes the MaEO droplets in water by the dipole-induced-dipole interactions and hydrogen bonds. The factorial design of experiments (DoE) indicates that CNF content and mixing time have significant effects on preventing the MaEO droplets' coalescence during 30-day shelf life. The bacteria inhibition zone assays show that the most stable emulsions showed antimicrobial activity comparable to commercial disinfectant agents such as hypochlorite. The MaEO/water stabilized-CNF emulsion is a promissory natural disinfectant with antibacterial activity against these bacteria strains, including the capability to damage the spike proteins at the SARS-CoV-2 particle surface after 15 min of direct contact when the MaEO concentration is 30 % v/v.


Subject(s)
Anti-Infective Agents , COVID-19 , Disinfectants , Melaleuca , Tea Tree Oil , Cellulose/chemistry , Emulsions/chemistry , SARS-CoV-2 , Escherichia coli , Staphylococcus aureus , Anti-Infective Agents/pharmacology , Water/chemistry
7.
Viruses ; 15(5)2023 04 25.
Article in English | MEDLINE | ID: covidwho-20233862

ABSTRACT

Porcine deltacoronavirus (PDCoV) is an emergent swine coronavirus which infects cells from the small intestine and induces watery diarrhea, vomiting and dehydration, causing mortality in piglets (>40%). The aim of this study was to evaluate the antigenicity and immunogenicity of the recombinant membrane protein (M) of PDCoV (rM-PDCoV), which was developed from a synthetic gene obtained after an in silico analysis with a group of 138 GenBank sequences. A 3D model and phylogenetic analysis confirmed the highly conserved M protein structure. Therefore, the synthetic gene was successfully cloned in a pETSUMO vector and transformed in E. coli BL21 (DE3). The rM-PDCoV was confirmed by SDS-PAGE and Western blot with ~37.7 kDa. The rM-PDCoV immunogenicity was evaluated in immunized (BLAB/c) mice and iELISA. The data showed increased antibodies from 7 days until 28 days (p < 0.001). The rM-PDCoV antigenicity was analyzed using pig sera samples from three states located in "El Bajío" Mexico and positive sera were determined. Our results show that PDCoV has continued circulating on pig farms in Mexico since the first report in 2019; therefore, the impact of PDCoV on the swine industry could be higher than reported in other studies.


Subject(s)
Coronavirus Infections , Swine Diseases , Swine , Animals , Mice , Membrane Proteins , Phylogeny , Genes, Synthetic , Escherichia coli
8.
J Nanobiotechnology ; 21(1): 156, 2023 May 19.
Article in English | MEDLINE | ID: covidwho-2325445

ABSTRACT

The development of vaccines based on outer membrane vesicles (OMV) that naturally bud off from bacteria is an evolving field in infectious diseases. However, the inherent inflammatory nature of OMV limits their use as human vaccines. This study employed an engineered vesicle technology to develop synthetic bacterial vesicles (SyBV) that activate the immune system without the severe immunotoxicity of OMV. SyBV were generated from bacterial membranes through treatment with detergent and ionic stress. SyBV induced less inflammatory responses in macrophages and in mice compared to natural OMV. Immunization with SyBV or OMV induced comparable antigen-specific adaptive immunity. Specifically, immunization with Pseudomonas aeruginosa-derived SyBV protected mice against bacterial challenge, and this was accompanied by significant reduction in lung cell infiltration and inflammatory cytokines. Further, immunization with Escherichia coli-derived SyBV protected mice against E. coli sepsis, comparable to OMV-immunized group. The protective activity of SyBV was driven by the stimulation of B-cell and T-cell immunity. Also, SyBV were engineered to display the SARS-CoV-2 S1 protein on their surface, and these vesicles induced specific S1 protein antibody and T-cell responses. Collectively, these results demonstrate that SyBV may be a safe and efficient vaccine platform for the prevention of bacterial and viral infections.


Subject(s)
Bacteremia , COVID-19 , Escherichia coli Infections , Vaccines , Mice , Animals , Humans , SARS-CoV-2 , Escherichia coli , COVID-19/prevention & control , Bacteria , Escherichia coli Infections/prevention & control , Bacterial Outer Membrane Proteins , Antibodies, Bacterial
9.
Acta Microbiol Immunol Hung ; 70(2): 142-146, 2023 Jun 16.
Article in English | MEDLINE | ID: covidwho-2326089

ABSTRACT

Many studies report an increase in antimicrobial resistance of Gram - negative bacteria during the COVID-19 pandemic. Our aim was to evaluate the epidemiological relationship between carbapenem-resistant (CR) Enterobacteriaceae isolates from patients in COVID-19 wards and to investigate the main mechanisms of carbapenem resistance in these isolates during the period April 2020-July 2021. A total of 45 isolates were studied: Klebsiella pneumoniae (n = 37), Klebsiella oxytoca (n = 2), Enterobacter cloacae complex (n = 4) and Escherichia coli (n = 2). Multiplex PCR was used for detection of genes encoding carbapenemases from different classes (blaKPC, blaIMP, blaVIM, blaNDM, blaOXA-48). For epidemiological typing and analysis, ERIC PCR was performed. Two clinical isolates of E. cloacae, previously identified as representatives of two dominant hospital clones from the period 2014-2017, were included in the study for comparison. In the CR K. pneumoniae group, 23 (62.2%) carried blaKPC, 13 (35.1%) blaNDM, 10 (27.0%) blaVIM, and 9 (24.3%) were positive for both blaKPC and blaVIM. The blaKPC was identified also in the two isolates of K. oxytoca and blaVIM in all E. cloacae complex isolates. The two CR isolates of E. coli possessed blaKPC and blaOXA-48 genes. Epidemiological typing identified 18 ERIC profiles among K. pneumoniae, some presented as clusters of identical and/or closely related isolates. The carbapenem resistance in the studied collection of isolates is mediated mainly by blaKPC. During the COVID-19 pandemic intrahospital dissemination of CR K. pneumoniae, producing carbapenemases of different molecular classes, as well as continuing circulation of dominant hospital clones of multidrug-resistant E. cloacae complex was documented.


Subject(s)
COVID-19 , Carbapenem-Resistant Enterobacteriaceae , Humans , Carbapenem-Resistant Enterobacteriaceae/genetics , Molecular Epidemiology , Escherichia coli/genetics , Anti-Bacterial Agents/pharmacology , Bulgaria , Pandemics , Microbial Sensitivity Tests , COVID-19/epidemiology , Klebsiella pneumoniae/genetics , Hospitals, University , Gram-Negative Bacteria/genetics , Carbapenems/pharmacology
10.
Front Cell Infect Microbiol ; 13: 1155293, 2023.
Article in English | MEDLINE | ID: covidwho-2327276

ABSTRACT

Introduction: The constantly mutating SARS-CoV-2 has been infected an increasing number of people, hence the safe and efficacious treatment are urgently needed to combat the COVID-19 pandemic. Currently, neutralizing antibodies (Nabs), targeting the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein are potentially effective therapeutics against COVID-19. As a new form of antibody, bispecific single chain antibodies (BscAbs) can be easily expressed in E. coli and exhibits broad-spectrum antiviral activity. Methods: In this study, we constructed two BscAbs 16-29, 16-3022 and three single chain variable fragments (scFv) S1-16, S2-29 and S3022 as a comparison to explore their antiviral activity against SARS-CoV-2. The affinity of the five antibodies was characterized by ELISA and SPR and the neutralizing activity of them was analyzed using pseudovirus or authentic virus neutralization assay. Bioinformatics and competitive ELISA methods were used to identify different epitopes on RBD. Results: Our results revealed the potent neutralizing activity of two BscAbs 16-29 and 16-3022 against SARS-CoV-2 original strain and Omicron variant infection. In addition, we also found that SARS-CoV RBD-targeted scFv S3022 could play a synergistic role with other SARS-CoV-2 RBD-targeted antibodies to enhance neutralizing activity in the form of a BscAb or in cocktail therapies. Discussion: This innovative approach offers a promising avenue for the development of subsequent antibody therapies against SARSCoV-2. Combining the advantages of cocktails and single-molecule strategies, BscAb therapy has the potential to be developed as an effective immunotherapeutic for clinical use to mitigate the ongoing pandemic.


Subject(s)
COVID-19 , Single-Chain Antibodies , Humans , SARS-CoV-2/genetics , Escherichia coli , Pandemics , Antibodies, Monoclonal , Antibodies, Neutralizing , Single-Chain Antibodies/genetics , Antibodies, Viral/therapeutic use , Antiviral Agents
11.
J Microbiol Methods ; 209: 106738, 2023 06.
Article in English | MEDLINE | ID: covidwho-2318087

ABSTRACT

Neonatal calf diarrhea (NCD) is frequently associated with single or mixed viral, bacterial and/or protozoal infections. Consequently, laboratory diagnostic of NCD usually requires specific tests for each potential agent; a time-consuming, laborious and expensive process. Herein, we describe an end-point multiplex PCR/reverse transcription-PCR (RT-PCR) for detection of five major NCD agents: bovine rotavirus (BRV), bovine coronavirus (BCoV), Escherichia coli K99 (E. coli K99), Salmonella enterica (S. enterica) and Cryptosporidium parvum (C. parvum). Initially, we selected and/or designed high-coverage primers. Subsequently, we optimized multiplex PCR/RT-PCR conditions. Next, we evaluated the analytical sensitivity of the assay and assessed the performance of the reaction by testing 95 samples of diarrheic calf feces. The analytical specificity was evaluated against bovine viral diarrhea virus (BVDV), E. coli heat-stable enterotoxin (STa) and Eimeria spp. The detection limit of our assay was about 10 infectious units of BRV, 10-2 dilution of a BCoV positive sample pool, about 5 × 10-4 CFU for S. enterica, 5 × 10-6 CFU for E. coli K99 and 50 oocysts for C. parvum. No non-specific amplification of other bovine diarrhea agents was detected. Out of 95 samples analyzed, 50 were positive for at least one target, being 35 single and 15 mixed infections. BRV was the most frequent agent detected in single infections (16/35), followed by Cryptosporidium spp. (11/35), which was the most frequent in mixed infections (11/15). Positive and negative multiplex results were confirmed in individual reactions. In conclusion, we described an end-point multiplex PCR/RT-PCR for faster and easier NCD diagnosis, which may be useful for routine diagnosis and surveillance studies.


Subject(s)
Coinfection , Cryptosporidiosis , Cryptosporidium parvum , Cryptosporidium , Noncommunicable Diseases , Infant, Newborn , Humans , Multiplex Polymerase Chain Reaction , Escherichia coli , Cryptosporidiosis/diagnosis , Reverse Transcription , Diarrhea/diagnosis , Diarrhea/veterinary , Cryptosporidium parvum/genetics
12.
Nat Methods ; 20(6): 841-848, 2023 Jun.
Article in English | MEDLINE | ID: covidwho-2316657

ABSTRACT

Efficient methods for the generation of specific mutations enable the study of functional variations in natural populations and lead to advances in genetic engineering applications. Here, we present a new approach, mutagenesis by template-guided amplicon assembly (MEGAA), for the rapid construction of kilobase-sized DNA variants. With this method, many mutations can be generated at a time to a DNA template at more than 90% efficiency per target in a predictable manner. We devised a robust and iterative protocol for an open-source laboratory automation robot that enables desktop production and long-read sequencing validation of variants. Using this system, we demonstrated the construction of 31 natural SARS-CoV2 spike gene variants and 10 recoded Escherichia coli genome fragments, with each 4 kb region containing up to 150 mutations. Furthermore, 125 defined combinatorial adeno-associated virus-2 cap gene variants were easily built using the system, which exhibited viral packaging enhancements of up to 10-fold compared with wild type. Thus, the MEGAA platform enables generation of multi-site sequence variants quickly, cheaply, and in a scalable manner for diverse applications in biotechnology.


Subject(s)
COVID-19 , RNA, Viral , Humans , COVID-19/genetics , SARS-CoV-2/genetics , Mutation , DNA/genetics , Escherichia coli/genetics
13.
J Biol Chem ; 299(6): 104787, 2023 06.
Article in English | MEDLINE | ID: covidwho-2308970

ABSTRACT

Understanding the functional properties of severe acute respiratory syndrome coronavirus 2 nonstructural proteins is essential for defining their roles in the viral life cycle, developing improved therapeutics and diagnostics, and countering future variants. Coronavirus nonstructural protein Nsp15 is a hexameric U-specific endonuclease whose functions, substrate specificity, mechanism, and dynamics are not fully defined. Previous studies report that Nsp15 requires Mn2+ ions for optimal activity; however, the effects of divalent ions on Nsp15 reaction kinetics have not been investigated in detail. Here, we analyzed the single- and multiple-turnover kinetics for model ssRNA substrates. Our data confirm that divalent ions are dispensable for catalysis and show that Mn2+ activates Nsp15 cleavage of two different ssRNA oligonucleotide substrates but not a dinucleotide. Biphasic kinetics of ssRNA substrates demonstrates that Mn2+ stabilizes alternative enzyme states that have faster substrate cleavage on the enzyme. However, we did not detect Mn2+-induced conformational changes using CD and fluorescence spectroscopy. The pH-rate profiles in the presence and absence of Mn2+ reveal active-site ionizable groups with similar pKas of ca. 4.8 to 5.2. An Rp stereoisomer phosphorothioate modification at the scissile phosphate had minimal effect on catalysis supporting a mechanism involving an anionic transition state. However, the Sp stereoisomer is inactive because of weak binding, consistent with models that position the nonbridging phosphoryl oxygen deep in the active site. Together, these data demonstrate that Nsp15 employs a conventional acid-base catalytic mechanism passing through an anionic transition state, and that divalent ion activation is substrate dependent.


Subject(s)
Endonucleases , Ions , RNA Cleavage , SARS-CoV-2 , Catalysis , COVID-19/microbiology , Endonucleases/genetics , Endonucleases/metabolism , Kinetics , Metals/chemistry , RNA Cleavage/genetics , SARS-CoV-2/enzymology , Ions/metabolism , Enzyme Activation , Manganese/chemistry , Hydrogen-Ion Concentration , Animals , Mice , Escherichia coli/genetics
14.
Funct Integr Genomics ; 23(2): 107, 2023 Mar 29.
Article in English | MEDLINE | ID: covidwho-2307860

ABSTRACT

Helicobacter pylori is a leading cause of stomach cancer and peptic ulcers. Thus, identifying epitopes in H. pylori antigens is important for disease etiology, immunological surveillance, enhancing early detection tests, and developing optimal epitope-based vaccines. We used immunoinformatic and computational methods to create a potential CagW epitope candidate for H. pylori protection. The cagW gene of H. pylori was amplified and cloned into pcDNA3.1 (+) for injection into the muscles of healthy BALB/c mice to assess the impact of the DNA vaccine on interleukin levels. The results will be compared to a control group of mice that received PBS or cagW-pcDNA3.1 (+) vaccinations. An analysis of CagW protein antigens revealed 8 CTL and 7 HTL epitopes linked with AYY and GPGPG, which were enhanced by adding B-defensins to the N-terminus. The vaccine's immunogenicity, allergenicity, and physiochemistry were validated, and its strong activation of TLRs (1, 2, 3, 4, and 10) suggests it is antigenic. An in-silico cloning and immune response model confirmed the vaccine's expression efficiency and predicted its impact on the immune system. An immunofluorescence experiment showed stable and bioactive cagW gene expression in HDF cells after cloning the whole genome into pcDNA3.1 (+). In vivo vaccination showed that pcDNA3.1 (+)-cagW-immunized mice had stronger immune responses and a longer plasmid DNA release window than control-plasmid-immunized mice. After that, bioinformatics methods predicted, developed, and validated the three-dimensional structure. Many online services docked it with Toll-like receptors. The vaccine was refined using allergenicity, antigenicity, solubility, physicochemical properties, and molecular docking scores. Virtual-reality immune system simulations showed an impressive reaction. Codon optimization and in-silico cloning produced E. coli-expressed vaccines. This study suggests a CagW epitopes-protected H. pylori infection. These studies show that the proposed immunization may elicit particular immune responses against H. pylori, but laboratory confirmation is needed to verify its safety and immunogenicity.


Subject(s)
Helicobacter Infections , Helicobacter pylori , Vaccines , Animals , Mice , Helicobacter pylori/genetics , Immunodominant Epitopes , Helicobacter Infections/prevention & control , Molecular Docking Simulation , Escherichia coli , Epitopes/genetics
15.
Rev Esp Quimioter ; 35(5): 468-474, 2022 Oct.
Article in Spanish | MEDLINE | ID: covidwho-2310369

ABSTRACT

OBJECTIVE: The disease caused by SARS-CoV-2 (COVID-19) has been a challenge for healthcare professionals since its appearance. Staphylococcus aureus has been described as one of the main pathogens causing bacterial infections in viral pandemics. However, co- infection with S. aureus causing bacteremia in patients with COVID-19 has yet to be well studied. METHODS: We performed a e study of S. aureus bacteremia (SAB) at Hospital Miguel Servet (Zaragoza) from March 2020 to February 2021. The clinical characteristics, mortality and risk factors of adults hospitalized patients with BSA associated COVID-19 compared to patients without COVID-19. RESULTS: A total of 95 patients with SAB were identified. 27.3% were positive for SARS-CoV-2. SAB represented 9.9% of bacteremia, being the second agent in frequency after E. coli. Nosocomial bacteremia was more frequent in the group of COVID-19 patients. The most frequent source of BSA in these patients was the respiratory source (26.9% vs 0%; P<0.001) followed by the skin (15.5% vs 15.9%; P=1). The development of sepsis was more frequent in COVID-19 patients (61,5% vs 7,8%; P=0,336) and among them, who received dexamethasone at doses > 6 mg/day (62.5% vs. 37.5%, P<0.05). CONCLUSIONS: Our data suggest that BSA has a negative impact on the evolution of patients with COVID-19. However, further and preferably prospective studies are required to obtain solid data on the impact of BSA on coronavirus patients.


Subject(s)
Bacteremia , COVID-19 , Staphylococcal Infections , Adult , Bacteremia/complications , Bacteremia/epidemiology , COVID-19/complications , Dexamethasone , Escherichia coli , Humans , SARS-CoV-2 , Staphylococcal Infections/drug therapy , Staphylococcal Infections/epidemiology , Staphylococcus aureus
16.
Medicine (Baltimore) ; 102(15): e33488, 2023 Apr 14.
Article in English | MEDLINE | ID: covidwho-2301106

ABSTRACT

Coronavirus disease-19 (COVID-19) is a global pandemic, with a high capability of contagious distribution, where national secondary and co-infections characterization are lacking. The objective of this study was to assess the impact of the COVID-19 pandemic on infection rates among patients admitted to the intensive care units at King Abdullah University Hospital, profiling the drug resistance rates nationally. This is a cross-sectional study of COVID-19 associated infections that was conducted at a teaching hospital, in the north of Jordan. It included all COVID-19 patients who were admitted to intensive care units during the first and second pandemic waves. Data on age, gender, length of stay, co-morbidities, co-infections and sensitivity to antibiotics were retrospectively collected from the hospital information database. Statistical analyses were performed using SPSS software. A total of 589 COVID-19 patients were included, of whom 20% developed bacterial associated infections. The ratio of bacterial co-infection to secondary infections was 1:8. Gram-negative bacteria, Acinetobacter baumannii (40.1%), Eschericia coli (17.5%), Klebsiella pneumonia (6.8%), and Pseudomonas aeruginosa (5.1%) were the most abundant isolated species. The detection rates of E coli (ESBL), K pneumonia (ESBL), A baumannii (CRO), P aeruginosa (CRO), S aureus (MRSA) were 52%, 67%, 97%, 44%, and 67%, respectively.


Subject(s)
Bacterial Infections , COVID-19 , Coinfection , Cross Infection , Humans , Pandemics , Escherichia coli , Retrospective Studies , Cross-Sectional Studies , COVID-19/epidemiology , Cross Infection/epidemiology , Cross Infection/microbiology , Bacterial Infections/microbiology , Hospitals, Teaching , Anti-Bacterial Agents/therapeutic use , Microbial Sensitivity Tests , Pseudomonas aeruginosa , Intensive Care Units
17.
Microbiol Spectr ; 11(3): e0297222, 2023 Jun 15.
Article in English | MEDLINE | ID: covidwho-2303928

ABSTRACT

The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has had a devastating effect, globally. We describe, for the first time, the occurrence of carbapenem-resistant bacteria colonizing SARS-CoV-2 patients who developed hospital-associated infections with carbapenemase-producing, Gram-negative bacteria at some isolation centers of SARS-CoV-2 in the eastern part of Libya. In total, at first, 109 samples were collected from 43 patients, with the samples being recovered from oral (n = 35), nasal (n = 45), and rectal (n = 29) cavities. Strain identification was performed via matrix assisted laser desorption ionization-time of flight (MALDI-TOF). Antibiotic susceptibility testing was carried out on Mueller-Hinton agar, using the standard disk diffusion method. MIC determination was confirmed via E-TEST and microdilution standard methods. A molecular study was carried out to characterize the carbapenem and colistin resistance in Gram-negative bacterial strains. All of the positive results were confirmed via sequencing. Klebsiella pneumoniae (n = 32), Citrobacter freundii (n = 21), Escherichia coli (n = 7), and Acinetobacter baumannii (n = 21) were the predominant isolated bacteria. Gram-negative isolates were multidrug-resistant and carried different carbapenem resistance-associated genes, including NDM-1 (56/119; 47.05%), OXA-48 (15/119; 12.60%), OXA-23 (19/119; 15.96%), VIM (10/119; 8.40%), and the colistin resistance mobile gene mcr-1 (4/119; 3.36%). The overuse of antimicrobials, particularly carbapenem antibiotics, during the SARS-CoV-2 pandemic has led to the emergence of multidrug-resistant bacteria, mainly K. pneumoniae, A. baumannii, and colistin-resistant E. coli strains. Increased surveillance as well as the rational use of carbapenem antibiotics and, recently, colistin are required to reduce the propagation of multidrug-resistant strains and to optimally maintain the efficacy of these antibiotics. IMPORTANCE In this work, we describe, for the first time, the occurrence of carbapenem-resistant bacteria colonizing COVID-19 patients who developed hospital-associated infections with carbapenemase-producing, Gram-negative bacteria at some isolation centers of COVID-19 in the eastern part of Libya. Our results confirmed that the overuse of antimicrobials, such as carbapenem antibiotics, during the COVID-19 pandemic has led to the emergence of multidrug-resistant bacteria, mainly K. pneumoniae and A. baumannii, as well as colistin resistance.


Subject(s)
COVID-19 , Colistin , Humans , Colistin/pharmacology , Carbapenems/pharmacology , SARS-CoV-2 , Escherichia coli , Pandemics , Anti-Bacterial Agents/pharmacology , Gram-Negative Bacteria , Hospitals , beta-Lactamases/genetics , Klebsiella pneumoniae/genetics , Microbial Sensitivity Tests
18.
Microb Biotechnol ; 16(5): 977-989, 2023 05.
Article in English | MEDLINE | ID: covidwho-2296253

ABSTRACT

Environmental water is considered one of the main vehicles for the transmission of antimicrobial resistance (AMR), posing an increasing threat to humans and animals health. Continuous efforts are being made to eliminate AMR; however, the detection of AMR pathogens from water samples often requires at least one culture step, which is time-consuming and can limit sensitivity. In this study, we employed comparative genomics to identify the prevalence of AMR genes within among: Escherichia coli, Klebsiella, Salmonella enterica and Acinetobacter, using publicly available genomes. The mcr-1, blaKPC (KPC-1 to KPC-4 alleles), blaOXA-48, blaOXA-23 and blaVIM (VIM-1 and VIM-2 alleles) genes are of great medical and veterinary significance, thus were selected as targets for the development of isothermal loop-mediated amplification (LAMP) detection assays. We also developed a rapid and sensitive sample preparation method for an integrated culture-independent LAMP-based detection from water samples. The developed assays successfully detected the five AMR gene markers from pond water within 1 h and were 100% sensitive and specific with a detection limit of 0.0625 µg/mL and 10 cfu/mL for genomic DNA and spiked bacterial cells, respectively. The integrated detection can be easily implemented in resource-limited areas to enhance One Health AMR surveillances and improve diagnostics.


Subject(s)
Anti-Bacterial Agents , Escherichia coli Proteins , Animals , Humans , Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial , Nucleic Acid Amplification Techniques/methods , Escherichia coli , Water , Sensitivity and Specificity
19.
ACS Appl Bio Mater ; 6(5): 1981-1991, 2023 05 15.
Article in English | MEDLINE | ID: covidwho-2296132

ABSTRACT

Numerous disinfection methods have been developed to reduce the transmission of infectious diseases that threaten human health. However, it still remains elusively challenging to develop eco-friendly and cost-effective methods that deactivate a wide range of pathogens, from viruses to bacteria and fungi, without doing any harm to humans or the environment. Herein we report a natural spraying protocol, based on a water-dispersible supramolecular sol of nature-derived tannic acid (TA) and Fe3+, which is easy-to-use and low-cost. Our formulation effectively deactivates viruses (influenza A viruses, SARS-CoV-2, and human rhinovirus) as well as suppressing the growth and spread of pathogenic bacteria (Escherichia coli, Salmonella typhimurium, Staphylococcus aureus, and Acinetobacter baumannii) and fungi (Pleurotus ostreatus and Trichophyton rubrum). Its versatile applicability in a real-life setting is also demonstrated against microorganisms present on the surfaces of common household items (e.g., air filter membranes, disposable face masks, kitchen sinks, mobile phones, refrigerators, and toilet seats).


Subject(s)
Anti-Infective Agents , COVID-19 , Viruses , Humans , Polyphenols/pharmacology , SARS-CoV-2 , COVID-19/prevention & control , Anti-Infective Agents/pharmacology , Disinfection/methods , Bacteria , Escherichia coli , Fungi
20.
Int J Mol Sci ; 23(24)2022 Dec 08.
Article in English | MEDLINE | ID: covidwho-2295447

ABSTRACT

Heme is of great significance in food nutrition and food coloring, and the successful launch of artificial meat has greatly improved the application of heme in meat products. The precursor of heme, 5-aminolevulinic acid (ALA), has a wide range of applications in the agricultural and medical fields, including in the treatment of corona virus disease 2019 (COVID-19). In this study, E. coli recombinants capable of heme production were developed by metabolic engineering and membrane engineering. Firstly, by optimizing the key genes of the heme synthesis pathway and the screening of hosts and plasmids, the recombinant strain EJM-pCD-AL produced 4.34 ± 0.02 mg/L heme. Then, the transport genes of heme precursors CysG, hemX and CyoE were knocked out, and the extracellular transport pathways of heme Dpp and Ccm were strengthened, obtaining the strain EJM-ΔCyoE-pCD-AL that produced 9.43 ± 0.03 mg/L heme. Finally, fed-batch fermentation was performed in a 3-L fermenter and reached 28.20 ± 0.77 mg/L heme and 303 ± 1.21 mg/L ALA. This study indicates that E. coli recombinant strains show a promising future in the field of heme and ALA production.


Subject(s)
COVID-19 , Escherichia coli Proteins , Humans , Escherichia coli/genetics , Escherichia coli/metabolism , Heme/metabolism , Aminolevulinic Acid/metabolism , Escherichia coli Proteins/metabolism , Metabolic Engineering , Fermentation
SELECTION OF CITATIONS
SEARCH DETAIL